The RNA binding protein Npl3 promotes resection of DNA double-strand breaks by regulating the levels of Exo1
نویسندگان
چکیده
Eukaryotic cells preserve genome integrity upon DNA damage by activating a signaling network that promotes DNA repair and controls cell cycle progression. One of the most severe DNA damage is the DNA double-strand break (DSB), whose 5΄ ends can be nucleolitically resected by multiple nucleases to create 3΄-ended single-stranded DNA tails that trigger DSB repair by homologous recombination. Here, we identify the Saccharomyces cerevisiae RNA binding protein Npl3 as a new player in DSB resection. Npl3 is related to both the metazoan serine-arginine-rich and the heterogeneous nuclear ribonucleo-proteins. NPL3 deletion impairs the generation of long ssDNA tails at the DSB ends, whereas it does not exacerbate the resection defect of exo1Δ cells. Furthermore, either the lack of Npl3 or the inactivation of its RNA-binding domains causes decrease of the exonuclease Exo1 protein levels as well as generation of unusual and extended EXO1 RNA species. These findings, together with the observation that EXO1 overexpression partially suppresses the resection defect of npl3Δ cells, indicate that Npl3 participates in DSB resection by promoting the proper biogenesis of EXO1 mRNA.
منابع مشابه
Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice
Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. Although CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the ce...
متن کاملPCNA promotes processive DNA end resection by Exo1
Exo1-mediated resection of DNA double-strand break ends generates 3' single-stranded DNA overhangs required for homology-based DNA repair and activation of the ATR-dependent checkpoint. Despite its critical importance in inducing the overall DNA damage response, the mechanisms and regulation of the Exo1 resection pathway remain incompletely understood. Here, we identify the ring-shaped DNA clam...
متن کاملSingle-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins.
Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imag...
متن کاملDNA PK JBC 110713 final
The resection of DNA double strand breaks (DSBs) initiates homologous recombination (HR) and is critical for genomic stability. Using direct measurement of resection in human cells and reconstituted assays of resection with purified proteins in vitro, we show that DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a classic non-homologous end joining (NHEJ) factor, antagonizes DSB resec...
متن کاملDNA Resection at Chromosome Breaks Promotes Genome Stability by Constraining Non-Allelic Homologous Recombination
DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5'→3' resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and E...
متن کامل